Regulating the structure of thermoplastic polyurethane elastomers with a diol chain extender to strength performance

Author:

Ma Yao1,Wu Lianfeng2,Li Shaolong1,Han Xu1,Peng Xiaoyong1,Feng Yingmin1,Ji Yumei1,Yang Yike1ORCID,Liu Feng1ORCID

Affiliation:

1. College of Chemistry and Green Catalysis Center Zhengzhou University Zhengzhou China

2. State Key Laboratory of Marine Coatings Marine Chemical Research Institute Co, Ltd Qingdao China

Abstract

AbstractThe structural defects of thermoplastic polyurethane elastomer (TPU) caused by the uneven distribution of hard segments limiting their potential application in special industrial fields such as aerospace or defense equipment. Optimizing the TPUs' structure is a useful method to adjustable uneven distribution of hard segments and enhance the performance of TPUs. In this work, a chain extender (BMB) embedded in carbamate‐derive units was successfully synthesized by 4,4′‐diphenylmethane diisocyanate (MDI) and 1,4‐butanediol (BDO). Using BMB and as chain extender, a modified BMB‐TPU was prepared, and its properties were systematically evaluated. Compared with conventional thermoplastic polyurethane elastomer (BDO‐TPU), BMB‐TPU had a regular structure with uniform hard segments, narrower molecular weight distribution and stronger intra/inter‐chain hydrogen bonding interactions, and thus better microphase separation. The BMB‐TPU exhibited an excellent tensile strength of 35 MPa, 46% higher than 24 MPa for the control BDO‐TPU. Moreover, the heat resistance of BMB‐TPU was also reinforced compared to BDO‐TPU, with an increase of 7.2°C for the degradation temperature of 5% loss and 9.6°C for the viscous flow transition temperature. We believe our paradigm can provide a feasible guide for designing high‐performance TPUs.

Funder

Startup Research Fund of Zhengzhou University

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3