The versatility of the Cholesky decomposition in electronic structure theory

Author:

Pedersen Thomas Bondo1ORCID,Lehtola Susi2ORCID,Fdez. Galván Ignacio3ORCID,Lindh Roland3ORCID

Affiliation:

1. Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry University of Oslo Oslo Norway

2. Department of Chemistry University of Helsinki Helsinki Finland

3. Department of Chemistry BMC, Uppsala University Uppsala Sweden

Abstract

AbstractThe resolution‐of‐the‐identity (RI) or density fitting (DF) approximation for the electron repulsion integrals (ERIs) has become a standard component of accelerated and reduced‐scaling implementations of first‐principles Gaussian‐type orbital electronic‐structure methods. The Cholesky decomposition (CD) of the ERIs has also become increasingly deployed across quantum chemistry packages in the last decade, even though its early applications were mostly limited to high‐accuracy methods such as coupled‐cluster theory and multiconfigurational approaches. Starting with a summary of the basic theory underpinning both the CD and RI/DF approximations, thus underlining the extremely close relation of the CD and RI/DF techniques, we provide a brief and largely chronological review of the evolution of the CD approach from its birth in 1977 to its current state. In addition to being a purely numerical procedure for handling ERIs, thus providing robust and computationally efficient approximations to the exact ERIs that have been found increasingly useful on modern computer platforms, CD also offers highly accurate approaches for generating auxiliary basis sets for the RI/DF approximation on the fly due to the deep mathematical connection between the two approaches. In this review, we aim to provide a concise reference of the main techniques employed in various CD approaches in electronic structure theory, to exemplify the connection between the CD and RI/DF approaches, and to clarify the state of the art to guide new implementations of CD approaches across electronic structure programs.This article is categorized under: Electronic Structure Theory > Ab Initio Electronic Structure Methods Software > Quantum Chemistry Quantum Computing > Theory Development

Funder

Academy of Finland

Norges Forskningsråd

Vetenskapsrådet

Publisher

Wiley

Subject

Materials Chemistry,Computational Mathematics,Physical and Theoretical Chemistry,Computer Science Applications,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3