Voltage‐based fault arc detection based on PCA‐RF

Author:

Wu Nengqi1ORCID,Wang Honglei1ORCID,Peng Mingyi1ORCID,Wang Jiaju1ORCID,Lu Qiwei1ORCID

Affiliation:

1. China University of Mining and Technology Beijing China

Abstract

SummaryThe arc fault characteristics of certain loads lack significance, making it difficult to efficiently detect the line current characteristics. This research presents a novel approach for detecting arc faults using a combination of principalc analysis (PCA) and Random Forest (RF) based on voltage measurements. The time‐domain eigenvalues of the load terminal voltages of single and mixed loads are initially extracted during both arc fault and normal operation. Principal component analysis is then conducted on a subset of these eigenvalues. The skewness and magnitude features of the resulting principal components and load terminal voltages are utilized as inputs for the Random Forest algorithm. After training the model, classification results are obtained. Ultimately, it is contrasted with techniques such as rime optimization algorithm‐multilayer perceptron (RIME‐MLP), convolutional neural network‐gated recurrent unit‐SE attention (CNN‐GRU‐SE), and Kepler optimization algorithm‐support vector machine (KOA‐SVM). The results demonstrated that the approach exhibits superior accuracy and a reduced false alarm rate.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3