On the choice of coordinate origin in length gauge optical rotation calculations

Author:

Parsons Taylor1,Balduf Ty1,Caricato Marco1ORCID

Affiliation:

1. Department of Chemistry University of Kansas Lawrence Kansas USA

Abstract

AbstractIn this work, we explore the issue of origin dependence in optical rotation (OR) calculations in the length dipole gauge (LG) using standard approximate methods belonging to density functional theory (DFT) and coupled cluster (CC) theory. We use the origin‐invariant LG approach, LG(OI), that we recently proposed as reference for the calculations, and we study whether a proper choice of coordinate origin and molecular orientation can be made such that diagonal elements of the LG‐OR tensor match those of the LG(OI) tensor. Using a numerical search algorithm, we show that multiple spatial orientations can be found where the LG and LG(OI) results match. However, a simple analytical procedure provides a spatial orientation where the origin of the coordinate system is close to the center of mass of the molecule. At the same time, we also show that putting the origin at the center of mass is not an ideal choice for every molecule (relative errors in the OR up to 70% can be obtained in out test set). Finally, we show that the choice of coordinate origin based on the analytical procedure is transferable across different methods and it is superior to putting the origin in the center of mass or center of nuclear charge. This is important because the LG(OI) approach is trivial to implement for DFT, but not necessarily for nonvariational methods in the CC family. Therefore, one can determine an optimal coordinate origin at DFT level and use it for standard LG‐CC response calculations.

Funder

National Science Foundation

Publisher

Wiley

Subject

Organic Chemistry,Spectroscopy,Drug Discovery,Pharmacology,Catalysis,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3