An intelligent impulsive noise mitigation with deep learning method

Author:

Yang Guo1,Qian Yuwen1ORCID,Wang Zikun1,Zhou Xiangwei2,Wu Wen1

Affiliation:

1. The School of Electronic and Optical Engineering Nanjing University of Science and Technology Nanjing China

2. The Division of Electrical and Computer Engineering Louisiana State University Baton Rouge Louisiana USA

Abstract

AbstractTo enable message transmission among sensors and equipment, power line communication (PLC) is a widely adopted smart grid. However, due to the occurrence of impulsive noise (IN), reliable transmissions over PLC channels in the smart grid are challenging. Therefore, in this paper, we propose an adaptive noise mitigation scheme to clip the IN with the sliding window‐based method, where the altitude of the received signal in the current time slots is obtained by computing the average altitude of signals in the previous and next time slots. To detect the states of IN and dynamically estimate the power threshold of signals for the IN mitigation scheme, we develop an intelligent algorithm based on the long short‐term memory network. To prevent the useful signals from being eliminated as IN signals, we propose the accelerated proximal gradient method (APGM) based on tone reservation to reduce the peak‐to‐average power ratio (PAPR) for the transmitting signals with low computational complexity. In addition, the closed‐form expression of the bit error rate (BER) is derived for the proposed sliding window‐based IN mitigation scheme according to the probability density function of the IN. Simulation results demonstrate that the proposed IN mitigation scheme achieves a better BER performance than the conventional IN mitigation schemes. In addition, the APGM aided by IN mitigation can further improve BER performance due to the PAPR reduction.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3