Functional clustering on a sphere via Riemannian functional principal components

Author:

Kim Hyunsung1ORCID,Lim Yaeji1ORCID

Affiliation:

1. Department of Statistics Chung‐Ang University Seoul 06974 Korea

Abstract

We propose the functional clustering algorithm applicable to the sphere‐valued random curves, called ‐centres Riemannian functional clustering (kCRFC). It is based on Riemannian functional principal component scores and ‐centres functional clustering algorithm; thus, we can obtain accurate clustering results by reflecting the geometry of the sphere. Our method shows better clustering performances than existing multivariate functional clustering methods in various simulation settings. We apply the proposed method to the migration trajectories of Egyptian Vultures in the Middle East and East Africa and fruit fly behaviours, containing the curves lied on two‐dimensional and three‐dimensional sphere, respectively.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3