Flexible hexagonal boron nitride@liquid metal/polydimethylsiloxane composites with excellent thermal conductivity and superior mechanical properties

Author:

Chen Yu1,Yao Fei2,Niu Hongrang2,Liu Chuanqi2,Yang Zhou2,Jiang Yue3ORCID,Luo Zhou3,Xu Zhiguang3

Affiliation:

1. AECC Beijing Institute of Aeronautical Materials Beijing China

2. Zhejiang Tiannu Group Paint Co., Ltd Jiaxing Zhejiang China

3. College of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing Zhejiang China

Abstract

AbstractHexagonal boron nitride (h‐BN) has a layered lattice structure, high intrinsic thermal conductivity, and good chemical stability, and it has a promising applications in thermal management materials. However, poor interfacial compatibility and dispersion of BN flakes in the polymer matrix cause thermal contact resistance and gaps, directly impairing the performance of the composites and limiting their thermal conduction applications. Herein, the P‐BN@LM/PDMS thermally conductive composites with superior mechanical properties were fabricated by incorporating dopamine and liquid metal (LM) into BN flakes. The dopamine self‐polymerizes to form polydopamine (PDA) on the BN surface, denoted as P‐BN, which effectively improves interface compatibility and dispersion. The LM attaches to the functionalized P‐BN surface by mechanical grinding, acting as a bridge between adjacent BN flakes to enhance the integrity of the thermal conductive network within the composites. The coordination between P‐BN and LM increases interface strength, effectively improving mechanical performance. Hence, the P‐BN@LM/PDMS composites exhibit excellent thermal conductivity (4.0 W/mK) and an enhancement factor of 1373%, which is 2.22 times that of BN/PDMS composites with the same 30 wt% loading. Additionally, the composite shows superior tensile strength (2.11 MPa) and elongation at break (121%), representing 441% and 203% improvements compared with pure polydimethylsiloxane (PDMS). The P‐BN@LM/PDMS composites, with significant advantages in thermal conductivity and mechanical properties, are promising for future applications as flexible thermal interface materials in thermal management.Highlights The P‐BN@LM/PDMS composites exhibit excellent thermal conductivity (4.0 W/mK) and an enhancement factor of 1373%, making them promising for future applications as flexible thermal interface materials in thermal management. The P‐BN@LM/PDMS composites present a superior tensile strength (2.11 MPa) and elongation at break (121%). PDA formed by the self‐polymerization of dopamine on the BN surface effectively enhances interfacial compatibility and dispersion. LM attaches to the functionalized BN surface through mechanical grinding, acting as a bridge between adjacent BN flakes, thus enhancing the integrity of the thermal conductive network within the composites.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3