Arthropod predator identity and evenness jointly shape the delivery of pest control services

Author:

Mei Zulin1ORCID,Scheper Jeroen1,Kleijn David1

Affiliation:

1. Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands

Abstract

AbstractBACKGROUNDMaximizing the effectiveness of natural pest control requires a detailed understanding of how service delivery is affected by natural enemy community diversity and composition. Many studies have investigated the effects of natural enemy abundance and species richness on pest control. Studies examining the effects of evenness and species identity are fewer and have produced inconsistent results. Here we test the effects of arthropod predator community evenness and species identity on natural pest control by exposing aphid (Sitobion avenae) colonies in experimental cages to arthropod predator communities that had the same abundance and species richness but differed in evenness and dominant species.RESULTSWe found that the identity of the most dominant species in the arthropod predator community predominantly drove the pest control efficiency. However, additional to the effects of species identity, we also found a causal positive relationship between the evenness of arthropod predator communities and the suppression of pest growth.CONCLUSIONOur results provide support for the hypothesis that ecosystem service provision is generally a function of the abundance and efficiency of the most dominant species of the service‐providing groups. This could partly explain why management practices aiming at promoting abundance of natural enemies often have mixed effects on pest control. Our results also demonstrate that diversity components such as evenness have important additional effects. However, in real‐world ecosystems these effects may be obscured because evenness is generally confounded with abundance or species richness in natural enemy predator communities. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Publisher

Wiley

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3