Implications of target signal choice in passive acoustic monitoring: an example of age‐ and sex‐dependent vocal repertoire use in African forest elephants (Loxodonta cyclotis)

Author:

Swider Colin R.12ORCID,Hedwig Daniela2,Wrege Peter H.2,Parks Susan E.1

Affiliation:

1. Bioacoustics and Behavioral Ecology Lab, Biology Department Syracuse University Syracuse New York USA

2. Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology Cornell University Ithaca New York USA

Abstract

AbstractPassive acoustic monitoring (PAM) is an effective remote sensing approach for sampling acoustically active animal species and is particularly useful for elusive, visually cryptic species inhabiting remote or inaccessible habitats. Key advantages of PAM are large spatial coverage and continuous, long‐term monitoring. In most cases, a signal detection algorithm is utilized to locate sounds of interest within long sequences of audio data. It is important to understand the demographic/contextual usage of call types when choosing a particular signal to use for detection. Sampling biases may result if sampling is restricted to subsets of the population, for example, when detectable vocalizations are produced only by a certain demographic class. Using the African forest elephant repertoire as a case study, we test for differences in call type usage among different age‐sex classes. We identified disproportionate usage by age‐sex class of four call types—roars, trumpets, rumbles, and combination calls. This differential usage of signals by demographic class has implications for the use of particular call types in PAM for this species. Our results highlight that forest elephant PAM studies that have used rumbles as target signals may have under‐sampled adult males. The addition of other call types to PAM frameworks may be useful to leverage additional population demographic information from these surveys. Our research exemplifies how an examination of a species' acoustic behavior can be used to better contextualize the data and results from PAM and to strengthen the resulting inference.

Funder

Hasso Plattner Foundation

National Geographic Society

U.S. Fish and Wildlife Service

Cornell Lab of Ornithology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3