Affiliation:
1. College of Plant Protection, Shandong Agricultural University Tai'an Shandong P. R. China
2. Hailir Pesticides and Chemicals Group Co., Ltd Qingdao Shandong P. R. China
Abstract
AbstractBACKGROUNDThe complex preparation process and storage instability of nanoformulations hinders their development and commercialization. In this study, nanocapsules loaded with abamectin were prepared by interfacial polymerization at room temperature and ordinary pressure using the monomers of epoxy resin (ER) and diamine. The potential mechanisms of primary amine and tertiary amine in influencing the shell strength of the nanocapsules and the dynamic stability of abamectin nanocapsules (Aba@ER) in the suspension system were systematically researched.RESULTSThe tertiary amine catalyzed the self‐polymerization of epoxy resin into linear macromolecules with unstable structures. The structural stability of the diamine curing agent with a primary amine group played a key role in enhancing the structural stability of the polymers. The intramolecular structure of the nanocapsule shell formed by isophorondiamine (IPDA) crosslinked epoxy resin has multiple spatial conformations and a rigid saturated six‐membered ring. Its structure was stable, and the shell strength was strong. The formulation had stable dynamic changes during storage and maintained excellent biological activity. Compared with emulsifiable concentrate (EC), Aba@ER/IPDA had superior biological activity, and the field efficacy on tomato root‐knot nematode was enhanced by approximately 31.28% at 150 days after transplanting.CONCLUSIONAba@ER/IPDA, which has excellent storage stability and simple preparation technology, can provide a nanoplatform with industrial prospects for efficient pesticide delivery. © 2023 Society of Chemical Industry.
Funder
National Natural Science Foundation of China
Subject
Insect Science,Agronomy and Crop Science,General Medicine
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献