The TILOS AI Institute: Integrating optimization and AI for chip design, networks, and robotics

Author:

Kahng Andrew B.1ORCID,Mazumdar Arya2,Reeves Jodi3,Wang Yusu2

Affiliation:

1. Departments of CSE and ECE UC San Diego La Jolla California USA

2. Halıcıoğlu Data Science Institute UC San Diego La Jolla California USA

3. School of Technology and Engineering National University San Diego California USA

Abstract

AbstractOptimization is a universal quest, reflecting the basic human need to do better. Improved optimizations of energy‐efficiency, safety, robustness, and other criteria in engineered systems would bring incalculable societal benefits. But, fundamental challenges of scale and complexity keep many such real‐world optimization needs beyond reach. This article describes The Institute for Learning‐enabled Optimization at Scale (TILOS), an NSF AI Research Institute for Advances in Optimization that aims to overcome these challenges in three high‐stakes use domains: chip design, communication networks, and contextual robotics. TILOS integrates foundational research, translation, education, and broader impacts toward a new nexus of optimization, AI, and data‐driven learning. We summarize central challenges, early progress, and futures for the institute.

Funder

Directorate for Computer and Information Science and Engineering

Publisher

Wiley

Reference16 articles.

1. Bustany I. A. B.Kahng Y.Koutis B.Pramanik andZ.Wang.2022. “SpecPart: A Supervised Spectral Framework for Hypergraph Partitioning Solution Improvement.” InProceedings of the IEEE/ACM International Conference on Computer‐Aided Design.

2. Cheng C.‐K. A. B.Kahng S.Kundu Y.Wang andZ.Wang.2023. “Assessment of Reinforcement Learning for Macro Placement.” InProceedings of theACM/IEEEInternationalSymposium on Physical Design 158–166.

3. CHIPS and Science Act H.R.4346 117th Congress (2021–2022) Public Law No: 117‐167 (08/09/2022).https://www.congress.gov/bill/117th‐congress/house‐bill/4346/text

4. CHIPS for America National Institute of Standards and Technology (NIST) U.S. Department of Commerce.https://www.nist.gov/chips

5. Duruisseaux V. T.Duong M.Leok andN.Atanasov.2023. “Lie Group Forced Variational Integrator Networks for Learning and Control of Robot Systems.”PMLR Learning for Dynamics and Control Conference (L4DC).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3