Combating misinformation in the age of LLMs: Opportunities and challenges

Author:

Chen Canyu1ORCID,Shu Kai1ORCID

Affiliation:

1. Illinois Institute of Technology Chicago Illinois USA

Abstract

AbstractMisinformation such as fake news and rumors is a serious threat for information ecosystems and public trust. The emergence of large language models (LLMs) has great potential to reshape the landscape of combating misinformation. Generally, LLMs can be a double‐edged sword in the fight. On the one hand, LLMs bring promising opportunities for combating misinformation due to their profound world knowledge and strong reasoning abilities. Thus, one emerging question is: can we utilize LLMs to combat misinformation? On the other hand, the critical challenge is that LLMs can be easily leveraged to generate deceptive misinformation at scale. Then, another important question is: how to combat LLM‐generated misinformation? In this paper, we first systematically review the history of combating misinformation before the advent of LLMs. Then we illustrate the current efforts and present an outlook for these two fundamental questions, respectively. The goal of this survey paper is to facilitate the progress of utilizing LLMs for fighting misinformation and call for interdisciplinary efforts from different stakeholders for combating LLM‐generated misinformation.

Funder

U.S. Department of Homeland Security

Office of the Director of National Intelligence

Intelligence Advanced Research Projects Activity

National Science Foundation

Publisher

Wiley

Reference118 articles.

1. Abilov A. Y.Hua H.Matatov O.Amir andM.Naaman.2021. “VoterFraud2020: A Multi‐Modal Dataset of Election Fraud Claims on Twitter.” InInternational Conference on Web and Social Media.

2. Aich A. S.Bhattacharya andN.Parde.2022. “Demystifying Neural Fake News Via Linguistic Feature‐Based Interpretation.” InProceedings of the COLING.

3. Alam F. S.Cresci T.Chakraborty F.Silvestri D.Dimitrov G. D. S.Martino S.Shaar H.Firooz andP.Nakov.2022. “A Survey on Multimodal Disinformation Detection.” InProceedings of the COLING.

4. Power to the People: The Role of Humans in Interactive Machine Learning

5. Antypas D. J.Camacho‐Collados A.Preece andD.Rogers.2021. “COVID‐19 and Misinformation: A Large‐Scale Lexical Analysis on Twitter.” InProceedings of ACL.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3