The 2023 International Planning Competition

Author:

Taitler Ayal1ORCID,Alford Ron2ORCID,Espasa Joan3ORCID,Behnke Gregor4,Fišer Daniel5,Gimelfarb Michael1,Pommerening Florian6,Sanner Scott1,Scala Enrico7,Schreiber Dominik8,Segovia‐Aguas Javier9,Seipp Jendrik10

Affiliation:

1. University of Toronto Toronto Ontario Canada

2. The MITRE Corporation McLean Virginia USA

3. University of St Andrews St Andrews UK

4. University of Amsterdam Amsterdam The Netherlands

5. Saarland University Saarbrucken Saarland Germany

6. University of Basel Basel Switzerland

7. University of Brescia Brescia Italy

8. Karlsruhe Institute of Technology Karlsruhe Baden‐Württemberg Germany

9. Universitat Pompeu Fabra Barcelona Spain

10. Linköping University Linkoping Östergötland Sweden

Abstract

AbstractIn this article, we present an overview of the 2023 International Planning Competition. It featured five distinct tracks designed to assess cutting‐edge methods and explore the frontiers of planning within these settings: the classical (deterministic) track, the numeric track, the Hierarchical Task Networks (HTN) track, the learning track, and the probabilistic and reinforcement learning track. Each of these tracks evaluated planning methodologies through one or more subtracks, with the goal of pushing the boundaries of current planner performance. To achieve this objective, the competition introduced a combination of well‐established challenges and entirely novel ones. Within this article, each track offers an exploration of its historical context, justifies its relevance within the planning landscape, discusses emerging domains and trends, elucidates the evaluation methodology, and ultimately presents the results.

Funder

Vetenskapsrådet

University Of Edinburgh

Engineering and Physical Sciences Research Council

Natural Sciences and Engineering Research Council of Canada

European Research Council

Publisher

Wiley

Reference80 articles.

1. Alford R. G.Behnke D.Höller P.Bercher S.Biundo andD. W.Aha.2016. “Bound to Plan: Exploiting Classical Heuristics via Automatic Translations of Tail‐Recursive HTN Problems.” InProceedings of the 26th International Conference on Automated Planning and Scheduling (ICAPS 2016) 20–28.AAAI Press.

2. Alford R. P.Bercher andD. W.Aha.2015. “Tight Bounds for HTN Planning.” InProceedings of the 25th International Conference on Automated Planning and Scheduling (ICAPS 2015) 7–15.AAAI Press.

3. Behnke G.2021. “Block Compression and Invariant Pruning for SAT‐Based Totally‐Ordered HTN Planning.” InProceedings of the International Conference on Automated Planning and Scheduling volume31 25–35.

4. Behnke G. D.Höller andP.Bercher eds.2021.Proceedings of the 10th International Planning Competition: Planner and Domain Abstracts – Hierarchical Task Network (HTN) Planning Track (IPC 2020).https://ipc2020.hierarchical-task.net/publications/IPC2020Booklet.pdf.

5. Behnke G. D.Höller A.Schmid P.Bercher andS.Biundo.2020. “On Succinct Groundings of HTN Planning Problems.” InProceedings of the AAAI Conference on Artificial Intelligence volume34 9775–9784.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3