Physical scene understanding

Author:

Wu Jiajun1ORCID

Affiliation:

1. Stanford University Stanford California USA

Abstract

AbstractCurrent AI systems still fail to match the flexibility, robustness, and generalizability of human intelligence: how even a young child can manipulate objects to achieve goals of their own invention or in cooperation, or can learn the essentials of a complex new task within minutes. We need AI with such embodied intelligence: transforming raw sensory inputs to rapidly build a rich understanding of the world for seeing, finding, and constructing things, achieving goals, and communicating with others. This problem of physical scene understanding is challenging because it requires a holistic interpretation of scenes, objects, and humans, including their geometry, physics, functionality, semantics, and modes of interaction, building upon studies across vision, learning, graphics, robotics, and AI. My research aims to address this problem by integrating bottom‐up recognition models, deep networks, and inference algorithms with top‐down structured graphical models, simulation engines, and probabilistic programs.

Funder

Stanford University

National Science Foundation

Office of Naval Research

Air Force Office of Scientific Research

Massachusetts Institute of Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3