XAI is in trouble

Author:

Weber Rosina O12ORCID,Johs Adam J1,Goel Prateek1,Silva João Marques3

Affiliation:

1. Information Science Drexel University Philadelphia Pennsylvania USA

2. Computer Science Drexel University Philadelphia Pennsylvania USA

3. IRIT CNRS Toulouse France

Abstract

AbstractResearchers focusing on how artificial intelligence (AI) methods explain their decisions often discuss controversies and limitations. Some even assert that most publications offer little to no valuable contributions. In this article, we substantiate the claim that explainable AI (XAI) is in trouble by describing and illustrating four problems: the disagreements on the scope of XAI, the lack of definitional cohesion, precision, and adoption, the issues with motivations for XAI research, and limited and inconsistent evaluations. As we delve into their potential underlying sources, our analysis finds these problems seem to originate from AI researchers succumbing to the pitfalls of interdisciplinarity or from insufficient scientific rigor. Analyzing these potential factors, we discuss the literature at times coming across unexplored research questions. Hoping to alleviate existing problems, we make recommendations on precautions against the challenges of interdisciplinarity and propose directions in support of scientific rigor.

Funder

National Center for Advancing Translational Sciences

Biological Technologies Office

Vinnova

Publisher

Wiley

Reference175 articles.

1. Peeking Inside the Black‐Box: A Survey on Explainable Artificial Intelligence (XAI);Adadi A.;IEEE Access,2018

2. Adebayo J. J.Gilmer M.Muelly I.Goodfellow M.Hardt andB.Kim.2018. “Sanity Checks for Saliency Maps.”In In 32nd Annual Conference on Advances in Neural Information Processing Systems 31 9505–15. NeurIPS.

3. Aha D.2017. “IJCAI Workshop on Explainable Artificial Intelligence.”https://dokumen.tips/documents/ijcai‐17‐workshop‐on‐explainable‐ai‐xai‐workshop‐on‐explainable‐ai‐xai‐proceedings.html?page=1.

4. Explainable Artificial Intelligence (XAI): What We Know and What is Left to Attain Trustworthy Artificial Intelligence;Ali S.;Information Fusion,2023

5. Consistency Restoration and Explanations in Dynamic CSPs Application to Configuration;Amilhastre J.;Artificial Intelligence,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3