Utilization of a 3D printer to fabricate boluses used for electron therapy of skin lesions of the eye canthi

Author:

Łukowiak Magdalena1,Jezierska Karolina2,Boehlke Marek1,Więcko Marzena1,Łukowiak Adam3,Podraza Wojciech2,Lewocki Mirosław1,Masojć Bartłomiej4,Falco Michał4

Affiliation:

1. Department of Medical Physics West Pomeranian Oncology Center Szczecin Poland

2. Department of Medical Physics Pomeranian Medical University Szczecin Poland

3. Department of Medical Devices Samodzielny Publiczny Wojewódzki Szpital Zespolony im. Marii Skłodowskiej–Curie Szczecin Poland

4. Department of Radiotherapy West Pomeranian Oncology Center Szczecin Poland

Abstract

AbstractThis work describes the use of 3D printing technology to create individualized boluses for patients treated with electron beam therapy for skin lesions of the eye canthi. It aimed to demonstrate the effectiveness of 3D‐printed over manually fabricated paraffin boluses. The study involved 11 patients for whom the construction of individual boluses were required. CT scans of the fabricated 3D‐printed boluses and paraffin boluses were acquired and superimposed onto patient CT scans to compare their fitting, bolus homogeneity, and underlying dose distribution. To quantify the level of matching, multiple metrics were utilized. Matching Level Index (ML) values ranged from 0 to 100%, where 100% indicated a perfect fit between the reference bolus (planned in treatment planning system) and 3D‐printed and paraffin bolus. The average ML (± 1 SD) of the 3D‐printed boluses was 95.1 ± 2.1%, compared to 46.0 ± 10.1% for the manually fabricated paraffin bolus. Correspondingly, mean doses were closer to the prescribed doses, and dose spreads were less for the dose distributions from the 3D‐printed boluses, as compared to those for the manually fabricated paraffin boluses. It was concluded that 3D‐printing technology is a viable method for fabricating boluses for small eye lesions and provides boluses superior to our boluses manually fabricated from paraffin sheets.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3