Characterization and evaluation of an integrated quality monitoring system for online quality assurance of external beam radiation therapy

Author:

Hoffman David1,Chung Eunah2,Hess Clayton3,Stern Robin4,Benedict Stanley4

Affiliation:

1. Department of Radiation Medicine and Applied Sciences University of California San Diego CA USA

2. Department of Radiation Oncology Samsung Medical Center Seoul South Korea

3. Pediatric Radiation Oncology Harvard Medical School Boston MA USA

4. Department of Radiation Oncology University of California Davis, Sacramento CA USA

Abstract

AbstractPurposeThe aim of this work was to comprehensively evaluate a new large field ion chamber transmission detector, Integral Quality Monitor (IQM), for online external photon beam verification and quality assurance. The device is designed to be mounted on the linac accessory tray to measure and verify photon energy, field shape, gantry position, and fluence before and during patient treatment.MethodsOur institution evaluated the newly developed ion chamber's effect on photon beam fluence, response to dose, detection of photon fluence modification, and the accuracy of the integrated barometer, thermometer, and inclinometer. The detection of photon fluence modifications was performed by measuring 6 MV with fields of 10 cm × 10 cm and 1 cm × 1 cm “correct” beam, and then altering the beam modifiers to simulate minor and major delivery deviations. The type and magnitude of the deviations selected for evaluation were based on the specifications for photon output and MLC position reported in AAPM Task Group Report 142. Additionally, the change in ion chamber signal caused by a simulated IMRT delivery error is evaluated.ResultsThe device attenuated 6 MV, 10 MV, and 15 MV photon beams by 5.43 ± 0.02%, 4.60 ± 0.02%, and 4.21 ± 0.03%, respectively. Photon beam profiles were altered with the IQM by < 1.5% in the nonpenumbra regions of the beams. The photon beam profile for a 1 cm × 1 cm2 fields were unchanged by the presence of the device. The large area ion chamber measurements were reproducible on the same day with a 0.14% standard deviation and stable over 4 weeks with a 0.47% SD. The ion chamber's dose–response was linear (R2 = 0.99999). The integrated thermometer agreed to a calibrated thermometer to within 1.0 ± 0.7°C. The integrated barometer agreed to a mercury barometer to within 2.3 ± 0.4 mmHg. The integrated inclinometer gantry angle measurement agreed with the spirit level at 0 and 180 degrees within 0.03 ± 0.01 degrees and 0.27 ± 0.03 at 90 and 270 degrees. For the collimator angle measurement, the IQM inclinometer agreed with a plum‐bob within 0.3 ± 0.2 degrees. The simulated IMRT error increased the ion chamber signal by a factor of 11–238 times the baseline measurement for each segment.ConclusionsThe device signal was dependent on variations in MU delivered, field position, single MLC leaf position, and nominal photon energy for both the 1 cm × 1 cm and 10 cm × 10 cm fields. This detector has demonstrated utility repeated photon beam measurement, including in IMRT and small field applications.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3