Affiliation:
1. Department of Radiation Physics Division of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX USA
2. The University of Texas Graduate School of Biomedical Sciences Houston TX USA
3. Department of Radiation Oncology Division of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX USA
4. Dipartimento Di Statistica Informatica Applicazioni “G.Parenti” University of Florence Viale Morgagni Florence Italy
5. Department of Imaging Physics Division of Diagnostic Imaging The University of Texas MD Anderson Cancer Center Houston TX USA
Abstract
AbstractRadiotherapy in a seated position may be indicated for patients who are unable to lie on the treatment couch for the duration of treatment, in scenarios where a seated treatment position provides superior anatomical positioning and dose distributions, or for a low‐cost system designed using a fixed treatment beam and rotating seated patient. In this study, we report a novel treatment chair that was constructed to allow for three‐dimensional imaging and treatment delivery while ensuring robust immobilization, providing reproducibility equivalent to that in the traditional supine position. Five patients undergoing radiation treatment for head‐and‐neck cancers were enrolled and were setup in the chair, with immobilization devices created, and then imaged with orthogonal X‐rays in a scenario that mimicked radiation treatments (without treatment delivery). Six subregions of the acquired images were rigidly registered to evaluate intra‐ and interfraction displacement and chair construction. Displacements under conditions of simulated image guidance were acquired by first registering one subregion; the residual displacement of other subregions was then measured. Additionally, we administered a patient questionnaire to gain patient feedback and assess comparison to the supine position. Average inter‐ and intrafraction displacements of all subregions in the seated position were less than 2 and 3 mm, respectively. When image guidance was simulated, L‐R and A‐P interfraction displacements were reduced by an average of 1 mm, providing setup of comparable quality to supine setups. The enrolled patients, who had no indication for a seated treatment position, reported no preference in the seated or the supine position. The novel chair design provides acceptable inter‐ and intrafraction displacement, with reproducibility equivalent to that reported for patients in the supine position. Patient feedback will be incorporated in the refinement of the chair, facilitating treatment of head‐and‐neck cancer in patients who are unable to lie for the duration of treatment or for use in an economical fixed‐beam setup.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献