Improving the efficiency of breast radiotherapy treatment planning using a semi‐automated approach

Author:

Mitchell Robert A1,Wai Philip1,Colgan Ruth1,Kirby Anna M2,Donovan Ellen M1

Affiliation:

1. Joint Department of Physics The Royal Marsden NHS Foundation Trust/Institute of Cancer Research Sutton Surrey UK

2. Department of Radiotherapy The Royal Marsden NHS Foundation Trust Sutton Surrey UK

Abstract

AbstractObjectivesTo reduce treatment planning times while maintaining plan quality through the introduction of semi‐automated planning techniques for breast radiotherapy.MethodsAutomatic critical structure delineation was examined using the Smart Probabilistic Image Contouring Engine (SPICE) commercial autosegmentation software (Philips Radiation Oncology Systems, Fitchburg, WI) for a cohort of ten patients. Semiautomated planning was investigated by employing scripting in the treatment planning system to automate segment creation for breast step‐and‐shoot planning and create objectives for segment weight optimization; considerations were made for three different multileaf collimator (MLC) configurations. Forty patients were retrospectively planned using the script and a planning time comparison performed.ResultsThe SPICE heart and lung outlines agreed closely with clinician‐defined outlines (median Dice Similarity Coefficient > 0.9); median difference in mean heart dose was 0.0 cGy (range −10.8 to 5.4 cGy). Scripted treatment plans demonstrated equivalence with their clinical counterparts. No statistically significant differences were found for target parameters. Minimal ipsilateral lung dose increases were also observed. Statistically significant (P < 0.01) time reductions were achievable for MLCi and Agility MLC (Elekta Ltd, Crawley, UK) plans (median 4.9 and 5.9 min, respectively).ConclusionsThe use of commercial autosegmentation software enables breast plan adjustment based on doses to organs at risk. Semi‐automated techniques for breast radiotherapy planning offer modest reductions in planning times. However, in the context of a typical department's breast radiotherapy workload, minor savings per plan translate into greater efficiencies overall.

Funder

National Institute for Health Research

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3