Random Algebraic Graphs and Their Convergence to ErdőS–Rényi

Author:

Bangachev Kiril1ORCID,Bresler Guy1

Affiliation:

1. Department of EECS MIT Cambridge Massachusetts

Abstract

ABSTRACTA random algebraic graph is defined by a group with a uniform distribution over it and a connection with expectation satisfying . The random graph with vertex set is formed as follows. First, independent variables are sampled uniformly from . Then, vertices are connected with probability . This model captures random geometric graphs over the sphere, torus, and hypercube; certain instances of the stochastic block model; and random subgraphs of Cayley graphs. The main question of interest to the current paper is: when is a random algebraic graph statistically and/or computationally distinguishable from ? Our results fall into two categories. (1) Geometric. We focus on the case and use Fourier‐analytic tools. We match and extend the following results from the prior literature: For hard threshold connections, we match for , and for ‐Lipschitz connections we extend the results of when to the non‐monotone setting. (2) Algebraic. We provide evidence for an exponential statistical‐computational gap. Consider any finite group and let be a set of elements formed by including each set of the form independently with probability Let be the distribution of random graphs formed by taking a uniformly random induced subgraph of size of the Cayley graph . Then, and are statistically indistinguishable with high probability over if and only if . However, low‐degree polynomial tests fail to distinguish and with high probability over when

Funder

Siebel Scholars Foundation

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sandwiching Random Geometric Graphs and Erdos-Renyi with Applications: Sharp Thresholds, Robust Testing, and Enumeration;Proceedings of the 57th Annual ACM Symposium on Theory of Computing;2025-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3