Evaluating the daily modulation of FADD and related molecular markers in different brain regions in male rats

Author:

Yáñez‐Gómez Fernando123,Gálvez‐Melero Laura12ORCID,Ledesma‐Corvi Sandra12,Bis‐Humbert Cristian12,Hernández‐Hernández Elena12,Salort Glòria12,García‐Cabrerizo Rubén123,García‐Fuster M. Julia123ORCID

Affiliation:

1. IUNICS University of the Balearic Islands Palma Spain

2. Health Research Institute of the Balearic Islands (IdISBa) Palma Spain

3. Department of Medicine University of the Balearic Islands Palma Spain

Abstract

AbstractFas‐Associated protein with Death Domain (FADD), a key molecule controlling cell fate by balancing apoptotic versus non‐apoptotic functions, is dysregulated in post‐mortem brains of subjects with psychopathologies, in animal models capturing certain aspects of these disorders, and by several pharmacological agents. Since persistent disruptions in normal functioning of daily rhythms are linked with these conditions, oscillations over time of key biomarkers, such as FADD, could play a crucial role in balancing the clinical outcome. Therefore, we characterized the 24‐h regulation of FADD (and linked molecular partners: p‐ERK/t‐ERK ratio, Cdk‐5, p35/p25, cell proliferation) in key brain regions for FADD regulation (prefrontal cortex, striatum, hippocampus). Samples were collected during Zeitgeber time (ZT) 2, ZT5, ZT8, ZT11, ZT14, ZT17, ZT20, and ZT23 (ZT0, lights‐on or inactive period; ZT12, lights‐off or active period). FADD showed similar daily fluctuations in all regions analyzed, with higher values during lights off, and opposite to p‐ERK/t‐ERK ratios regulation. Both Cdk‐5 and p35 remained stable and did not change across ZT. However, p25 increased during lights off, but exclusively in striatum. Finally, no 24‐h modulation was observed for hippocampal cell proliferation, although higher values were present during lights off. These results demonstrated a clear daily modulation of FADD in several key brain regions, with a more prominent regulation during the active time of rats, and suggested a key role for FADD, and molecular partners, in the normal physiological functioning of the brain's daily rhythmicity, which if disrupted might participate in the development of certain pathologies.

Funder

Ministerio de Economía y Competitividad

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3