Role of ZnO/MWCNTs hybrids nanoparticles addition on the tribological behaviour of SN150 paraffinic mineral oil

Author:

Rahim K. Asraf12,Saud Safaa N.3,Wee Y. C.3

Affiliation:

1. School of Graduate Studies Management and Science University (MSU) Shah Alam Selangor Malaysia

2. Technical Services Management Lubetech Sdn Bhd Shah Alam Selangor Malaysia

3. Faculty of Information Sciences and Engineering Management and Science University (MSU) Shah Alam Selangor Malaysia

Abstract

AbstractNanoparticle incorporation plays an active feature in heat transfer, ultimately enhancing the tribological process under boundary conditions of heat stress. Nanoparticles like zinc oxide (ZnO) and multiwall carbon nanotubes (MWCNT) are well known to significantly affect the cooling and lubrication applications, resulting in improved heat transfer and kinematic viscosity. The present work investigates the tribological performance of ZnO/MWCNTs hybrids as lubricant additive in the paraffinic type of mineral base oil of Group I (SN150) engine oil. The chemical composition of the modified and unmodified oil was examined by an inductively coupled plasma‐optical emission spectrometer (ICP‐OES), energy dispersive x‐ray fluorescence (EDXRF) spectrometer, and Fourier‐transform infrared spectroscopy (FTIR). A ring‐on‐disk tribotester was performed to investigate the tribological behaviour through the linear reciprocating mechanism alloy‐steel contacts. The worn steel alloy surfaces morphology and chemical compositions were examined by scanning electron microscope (SEM), energy‐dispersive x‐ray spectroscopy (EDX), and 3D optical profilometer. Different ZnO/MWCNTs nanomaterial volumetric concentrations were examined in order to determine the most effective performance. According to the tribological results, ZnO/MWCNTs hybrid nanomaterials in the engine oil were found to have significantly higher friction temperature and antiwear capability than the base oil. A volumetric concentration of 3.00 wt% ZnO/MWCNTs nanomaterials to SN150 engine oil imparted excellent wear protection to the steel sample than the pure SN150 base oil. Based on the statistical analysis, the modified oil anti‐wear performance was enhanced by reducing the wear loss by 80.5% and friction temperature by 55.8°C compared with the oil base.

Funder

Management and Science University

Publisher

Wiley

Subject

Materials Chemistry,Surfaces, Coatings and Films

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3