A Multi‐Fusion Residual Attention U‐Net Using Temporal Information for Segmentation of Left Ventricular Structures in 2D Echocardiographic Videos

Author:

Wang Kai1ORCID,Hachiya Hirotaka1,Wu Haiyuan2

Affiliation:

1. Graduate School of System Engineering Wakayama University Wakayama‐city Japan

2. On‐Campus Shared Facilities Wakayama University Wakayama‐city Japan

Abstract

ABSTRACTThe interpretation of cardiac function using echocardiography requires a high level of diagnostic proficiency and years of experience. This study proposes a multi‐fusion residual attention U‐Net, MURAU‐Net, to construct automatic segmentation for evaluating cardiac function from echocardiographic video. MURAU‐Net has two benefits: (1) Multi‐fusion network to strengthen the links between spatial features. (2) Inter‐frame links can be established to augment the temporal coherence of sequential image data, thereby enhancing its continuity. To evaluate the effectiveness of the proposed method, we performed nine‐fold cross‐validation using CAMUS dataset. Among state‐of‐the‐art methods, MURAU‐Net achieves highly competitive score, for example, Dice similarity of 0.952 (ED phase) and 0.931 (ES phase) in , 0.966 (ED phase) and 0.957 (ES phase) in , and 0.901 (ED phase) and 0.917 (ES phase) in , respectively. It also achieved the Dice similarity of 0.9313 in the EchoNet‐Dynamic dataset for the overall left ventricle segmentation. In addition, we show MURAU‐Net can accurately segment multiclass cardiac ultrasound videos and output the animation of segmentation results using the original two‐chamber cardiac ultrasound dataset MUCO.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3