Cyclic carbonates as building blocks for non‐isocyanate polyurethanes

Author:

Kotanen Soilikki1ORCID,Wirtanen Tom2,Mahlberg Riitta2,Anghelescu‐Hakala Adina2,Harjunalanen Tapani1,Willberg‐Keyrilainen Pia2,Laaksonen Timo34,Sarlin Essi4

Affiliation:

1. Kiilto Oy Tampere Finland

2. Department of Industrial Synthesis and Catalysis VTT Technical Research Centre of Finland Ltd Espoo Finland

3. Faculty of Pharmacy University of Helsinki Helsinki Finland

4. Faculty of Engineering and Natural Sciences Tampere University Tampere Finland

Abstract

AbstractThree different cyclic carbonates (ethylene, propylene, and butylene carbonate) that can be derived from CO2 were successfully polymerized with hexamethylenediamine to form non‐isocyanate polyurethanes (NIPUs) via self‐polycondensation route without the use of harmful di‐isocyanates. Three different catalysts were compared for their performance in self‐polycondensation. Increasing the side chain length in cyclic carbonate increased the amount of urea side reaction and decreased the solubility of the final product. The increased amount of urea lead to a more thermoset behavior as the melting and decomposition took place simultaneously. Furthermore, the extent of urea side reaction and melting behavior were adjustable with the selection of the catalyst or polymerization parameters. With ethylene and propylene carbonate based precursors, it was possible to obtain promising melting temperatures and lap shear strength for the NIPUs when optimized polymerization parameters and catalyst were used.

Funder

Business Finland

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3