Changes in extreme precipitation indices across Algeria climate zones

Author:

Hamitouche Yasmine1ORCID,Zeroual Ayoub1ORCID,Meddi Mohamed1ORCID,Assani Ali Arkamose2ORCID,Alkama Ramdane3ORCID

Affiliation:

1. Water Engineering and Environment Laboratory National Higher School of Hydraulics (ENSH‐Blida) Blida Algeria

2. Department of Environmental Sciences University of Quebec at Trois‐Rivières, 3351 Boulevard des Forges Trois‐Rivières Quebec Canada

3. Bio‐Economy Unit European Commission, JRC, Directorate D‐Sustainable Resources Ispra Italy

Abstract

AbstractExtreme precipitation events can have a significant impact on the environment, agriculture, economy and safety, making close monitoring of their short‐ and long‐term trends essential for the development of effective mitigation and adaptation strategies. In this study, we analysed 16 in situ observation datasets from four different climate zones in Algeria, spanning from 1969 to 2021. The trend analysis was conducted using the original Mann–Kendall test and seven modified tests to eliminate the effects of short‐term persistence. Our findings reveal a significant increasing trend of extreme precipitation variability for most stations in the Warm Mediterranean climate zone, except for the Consecutive dry days index, which showed a negative trend for the same zone, while stations in the Cold/Warm semi‐arid climate and Cold desert climate (Bwk) zones showed a decreasing trend. Additionally, all index series with significant long‐term trends were affected by a significant shift in their means, which was confirmed by both the Lombard and Pettitt tests. However, when we used the modified MPT and the test eliminating the effects of long‐term persistence, the significance of the shifts and the trend decreased. Our results suggest that while extreme precipitation events have been increasing in some parts of Algeria; the trend may not be statistically significant in the long‐run, indicating the necessity of revisiting and refreshing the findings of previous studies for a more current perspective.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3