Combined optically stimulated luminescence and radiocarbon dating of aeolian dunes in Arctic Sweden

Author:

Oehler Salome12ORCID,Stevens Thomas34,Kolb Thomas2,Possnert Göran5,Fuchs Markus2

Affiliation:

1. Institute of Earth Surface Dynamics University of Lausanne, Géopolis Lausanne Switzerland

2. Department of Physical Geography Justus‐Liebig‐University Giessen Giessen Germany

3. Department of Earth Sciences Uppsala University Uppsala Sweden

4. Department of Geosciences and Geography University of Helsinki Helsinki Finland

5. Tandem Laboratory Uppsala University Uppsala Sweden

Abstract

AbstractMultiple parabolic sand dune fields formed in Arctic Sweden after the last deglaciation, facilitated by an abundance of loose glaciofluvial sediment, limited vegetation cover and strong winds. Following initial stabilisation, these dunes underwent repeated reworking after fire events, as evidenced by the presence of buried soils, charcoal layers and redeposited sands in the dune stratigraphy. These reworking events may be driven by wider climate forcing; however, to date, no chronological framework exists for this activity in Sweden. As such, here, we apply quartz optically stimulated luminescence (OSL) dating of Arctic Swedish sand dunes using two dunes at the sites of Vastakielinen and Jorggástat. Resultant double‐SAR (single aliquot regenerative dose) quartz OSL ages are in good agreement with independent ages provided by 14C dating of charcoal fragments recovered from charcoal layers within the dunes, and we conclude that the chosen protocol is generally well suited for dating aeolian reworking of dune sediments in Arctic Sweden. While feldspar contamination limits precise age assignment for initial dune movement, our results nonetheless suggest repeated and long‐lasting aeolian activity in Arctic Sweden throughout the Holocene and, although there are differences in detail, further suggest some general trends in terms of dune stability and reworking over Arctic Fennoscandia.

Funder

Swedish Foundation for International Cooperation in Research and Higher Education

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3