Predicting tail risks by a Markov switching MGARCH model with varying copula regimes

Author:

Fülle Markus J.1,Herwartz Helmut1

Affiliation:

1. Chair of Econometrics University of Goettingen Goettingen Germany

Abstract

AbstractTo improve the dynamic assessment of risks of speculative assets, we apply a Markov switching MGARCH approach to portfolio risk forecasting. More specifically, we take advantage of the flexible Markov switching copula multivariate GARCH (MS‐C‐MGARCH) model of Fülle and Herwartz (2022). As an empirical illustration, we take the perspective of a risk‐averse agent and employ the suggested model for assessments of future risks of portfolios composed of a high‐yield equity index (S&P 500) and two safe‐haven investment instruments (i.e., Gold and US Treasury Bond Futures). We follow recent suggestions to employ the expected shortfall as a prime assessment of tail risks. To accurately evaluate the merits of the new model, we back‐test the risk forecasting for daily returns over 10 years for heterogeneous market environments including, for example, the COVID‐19 pandemic. We find that the MS‐C‐MGARCH model outperforms benchmark volatility models (MGARCH, C‐MGARCH) in predicting both value‐at‐risk and expected shortfall. The superiority of the MS‐C‐MGARCH model becomes stronger, when the share of comparably risky assets in the portfolio is relatively large.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3