Protein therapy of skeletal muscle atrophy and mechanism by angiogenic factor AGGF1

Author:

He Zuhan1,Song Qixue1,Yu Yubing1,Liu Feng2,Zhao Jinyan1,Un Waikeong3,Da Xingwen1,Xu Chengqi1,Yao Yufeng1,Wang Qing K.1ORCID

Affiliation:

1. Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology Huazhong University of Science and Technology Wuhan China

2. Department of Orthopedics Renmin Hospital of Wuhan University Wuhan China

3. Department of Urology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China

Abstract

AbstractBackgroundSkeletal muscle atrophy is a common condition without a pharmacologic therapy. AGGF1 encodes an angiogenic factor that regulates cell differentiation, proliferation, migration, apoptosis, autophagy and endoplasmic reticulum stress, promotes vasculogenesis and angiogenesis and successfully treats cardiovascular diseases. Here, we report the important role of AGGF1 in the pathogenesis of skeletal muscle atrophy and attenuation of muscle atrophy by AGGF1.MethodsIn vivo studies were carried out in impaired leg muscles from patients with lumbar disc herniation, two mouse models for skeletal muscle atrophy (denervation and cancer cachexia) and heterozygous Aggf1+/− mice. Mouse muscle atrophy phenotypes were characterized by body weight and myotube cross‐sectional areas (CSA) using H&E staining and immunostaining for dystrophin. Molecular mechanistic studies include co‐immunoprecipitation (Co‐IP), western blotting, quantitative real‐time PCR analysis and immunostaining analysis.ResultsHeterozygous Aggf1+/− mice showed exacerbated phenotypes of reduced muscle mass, myotube CSA, MyHC (myosin heavy chain) and α‐actin, increased inflammation (macrophage infiltration), apoptosis and fibrosis after denervation and cachexia. Intramuscular and intraperitoneal injection of recombinant AGGF1 protein attenuates atrophy phenotypes in mice with denervation (gastrocnemius weight 81.3 ± 5.7 mg vs. 67.3 ± 5.1 mg for AGGF1 vs. buffer; P < 0.05) and cachexia (133.7 ± 4.7 vs. 124.3 ± 3.2; P < 0.05). AGGF1 expression undergoes remodelling and is up‐regulated in gastrocnemius and soleus muscles from atrophy mice and impaired leg muscles from patients with lumbar disc herniation by 50–60% (P < 0.01). Mechanistically, AGGF1 interacts with TWEAK (tumour necrosis factor‐like weak inducer of apoptosis), which reduces interaction between TWEAK and its receptor Fn14 (fibroblast growth factor‐inducing protein 14). This leads to inhibition of Fn14‐induced NF‐kappa B (NF‐κB) p65 phosphorylation, which reduces expression of muscle‐specific E3 ubiquitin ligase MuRF1 (muscle RING finger 1), resulting in increased MyHC and α‐actin and partial reversal of atrophy phenotypes. Autophagy is reduced in Aggf1+/− mice due to inhibition of JNK (c‐Jun N‐terminal kinase) activation in denervated and cachectic muscles, and AGGF1 treatment enhances autophagy in two atrophy models by activating JNK. In impaired leg muscles of patients with lumbar disc herniation, MuRF1 is up‐regulated and MyHC and α‐actin are down‐regulated; these effects are reversed by AGGF1 by 50% (P < 0.01).ConclusionsThese results indicate that AGGF1 is a novel regulator for the pathogenesis of skeletal muscle atrophy and attenuates skeletal muscle atrophy by promoting autophagy and inhibiting MuRF1 expression through a molecular signalling pathway of AGGF1‐TWEAK/Fn14‐NF‐κB. More importantly, the results indicate that AGGF1 protein therapy may be a novel approach to treat patients with skeletal muscle atrophy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Physiology (medical),Orthopedics and Sports Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3