Computational assessment of the use of graphene‐based nanosheets as PtII chemotherapeutics delivery systems

Author:

Belletto Daniele1ORCID,Vigna Vincenzo1ORCID,Barretta Pierraffaele1ORCID,Ponte Fortuna1ORCID,Mazzone Gloria1ORCID,Scoditti Stefano1ORCID,Sicilia Emilia1ORCID

Affiliation:

1. Department of Chemistry and Chemical Technologies Università della Calabria Arcavacata di Rende Italy

Abstract

AbstractGraphene is the newest form of elemental carbon and it is becoming rapidly a potential candidate in the framework of nano‐bio research. Many reports confirm the successful use of graphene‐based materials as carriers of anticancer drugs having relatively high loading capacities compared with other nanocarriers. Here, the outcomes of a systematic study of the adsorption behavior of FDA approved PtII drugs cisplatin, oxaliplatin, and carboplatin on surface models of pristine, holey, and nitrogen‐doped holey graphene are reported. DFT investigations in water solvent have been carried out considering several initial orientations of the drugs with respect to the surfaces. Adsorption free energies, calculated including basis set superposition error (BSSE) corrections, result to be significantly negative for many of the drug@carrier adducts indicating that tested layers could be used as potential carriers for the delivery of anticancer PtII drugs. The reduced density gradient (RDG) analysis allows to show that many kinds of non‐covalent interactions, including canonical H‐bond, are responsible for the stabilization of the formed adducts.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3