Affiliation:
1. ENSL, CNRS, Laboratoire de Chimie UMR 5182 Lyon Cedex France
Abstract
AbstractDensity functional theory (DFT) calculations explore the stability of a single platinum atom on various flat, stepped, and defective ceria surfaces, in the context of single‐atom catalysts (SACs) for the water–gas shift (WGS) reaction. The adsorption properties and diffusion kinetics of the metal strongly depend on the support termination with large stability on metastable and stepped CeO2(100) and (210) surfaces where the diffusion of the platinum atom is hindered. At the opposite, the more stable CeO2(111) and (110) terminations weakly bind the platinum atom and can promote the growth of metallic clusters thanks to fast diffusion kinetics. The adsorption of carbon monoxide on the single platinum atom supported on the various ceria terminations is also sensitive to the surface structure. Carbon monoxide weakly binds to the single platinum atom supported on reduced CeO2(111) and (211) terminations. The desorption of the CO2 formed during the WGS reaction is thus facilitated on the latter terminations. A vibrational analysis underlines the significant changes in the calculated scaled anharmonic CO stretching frequency on these catalysts.
Funder
Deutsche Forschungsgemeinschaft
Agence Nationale de la Recherche