Energy systems modeling for maximizing renewable energy share in fossil fuel dominated Mediterranean climate

Author:

Noorollahi Younes12ORCID,Rezaei Mohammadmahdi1ORCID,Mirzaei Mohammadreza2

Affiliation:

1. Energy Modelling and Sustainable Energy System (METSAP) Research Lab., Faculty of New Sciences and Technologies University of Tehran Tehran Iran

2. Department of Renewable Energies and Environmental Engineering, Faculty of New Sciences and Technologies University of Tehran Tehran Iran

Abstract

AbstractIncreasing energy production and consumption and the need to save and increase its efficiency will lead us to manage the energy system on both supply and demand sides with higher accuracy. This study presents a new model scheme for Mediterranean climate areas' energy systems due to the importance of energy modeling to meet energy systems' needs. This model aims to provide an interactive energy system for two short and medium‐term time horizons (2025 and 2030, respectively) by targeting three main objectives: total primary energy supply, greenhouse gas emissions, and system cost. North Khorasan province in northeastern Iran has been selected for the case study as an example of mountainous and Mediterranean climates. EnergyPLAN has been used as a modeling tool. Accordingly, after examining the study area's current state, its future needs are forecasted using the support vector machine algorithm. The study area's optimal energy system is modeled within the desired time horizons by applying and comparing four different scenarios, including business as usual (BAU), power plant optimization, and demand response with wind or solar power plants. The results show that the part of the energy demand provided by wind scenario's situation is favorable and can meet the study area's future demands. This scenario will reduce CO2 emissions in 2025 and 2030 by 93.87 and 227.78 kilotonnes per year, respectively, compared to the BAU scenario. It is also estimated that this scenario's implementation will save the total annual cost of 8.27 and 156.06 million euros compared to the BAU scenario in 2025 and 2030.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3