Engineering antibacterial shrinkage‐free trinary PLGA‐based  GBR membrane for bone regeneration

Author:

Doost Ahad Rabbani1,Shokrolahi Fatemeh1,Shokrollahi Parvin1ORCID,Barzin Jalal1ORCID,Hosseini Samaneh2

Affiliation:

1. Department of Biomaterials Iran Polymer and Petrochemical Institute Tehran Iran

2. Department of Stem Cells and Developmental Biology Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology Tehran Iran

Abstract

AbstractThe purpose of this study was preparation of a multilayer electrospun poly (lactic‐co‐glycolic acid) (PLGA)‐based guided bone regeneration (GBR) membrane with controlled shrinkage behavior and alveolar bone regeneration property. First, PLGA copolymer, and zinc‐doped hydroxyapatite (Zn‐HAp) particles were prepared and characterized using fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), proton nuclear magnetic resonance, and X‐ray diffraction analysis. Since the electrospun PLGA scaffolds showed about 80% shrinkage at physiological conditions (phosphate‐buffered saline, 37°C), the effect of factors such as fiber‐alignment, and additives including natural polymers such as gelatin and chitosan, and Zn‐HAp particles; as well as solution preparation method was investigated on the shrinkage ratio. The results showed that it is possible to eliminate the shrinkage of the scaffold in the physiological environment through appropriate design of a tri‐layer PLGA‐CHI/PLGA‐Gel/PLGA‐Gel‐ZnHAp membrane. The designed tri‐layer membrane demonstrated a bubble point smaller than 7 μm, and improved mechanical properties compared with the individual sub‐layer scaffolds. Additionally, it exhibited enhanced antibacterial activity when compared with a similar three‐layer membrane in which HAp was used instead of Zn‐HAp. This observation suggests a synergistic antibacterial effect resulting from the presence of both zinc ions in Zn‐HAp and chitosan . Osteogenic differentiation of adipose‐derived mesenchymal stem cells cultured on the optimal multilayer composite scaffold, was investigated using alkaline phosphatase and Alizarin red staining assays, and the results suggested that the scaffold could support  osteogenic differentiation of the stem cells. The designed membrane was implanted in critical size (1 cm) mandibular defects in dogs, and bone regeneration was monitored by computed tomography. Defects treated with the GBR membrane, and the control group showed 69.31% and 44.63%, newly mineralized tissue, respectively, after 8 weeks post implantation. Based on our results, the engineered 3‐layer scaffold is a promising candidate as a GBR membrane for periodontal applications.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3