Direct and indirect cumulative effects of temperature, nutrients, and light on phytoplankton growth

Author:

Heinrichs Anna Lena1ORCID,Hardorp Onja Johannes1ORCID,Hillebrand Helmut123ORCID,Schott Toni1ORCID,Striebel Maren1ORCID

Affiliation:

1. Institute for Chemistry and Biology of the Marine Environment (ICBM) Carl‐von‐Ossietzky University of Oldenburg, School of Mathematics and Science Oldenburg Germany

2. Helmholtz Institute for Functional Marine Biodiversity (HIFMB) Carl‐von‐Ossietzky University of Oldenburg Oldenburg Germany

3. Alfred Wegener Institute, Helmholtz‐Centre for Polar and Marine Research [AWI] Bremerhaven Germany

Abstract

AbstractTemperature and resource availability are pivotal factors influencing phytoplankton community structures. Numerous prior studies demonstrated their significant influence on phytoplankton stoichiometry, cell size, and growth rates. The growth rate, serving as a reflection of an organism's success within its environment, is linked to stoichiometry and cell size. Consequently, alterations in abiotic conditions affecting cell size or stoichiometry also exert indirect effects on growth. However, such results have their limitations, as most studies used a limited number of factors and factor levels which gives us limited insights into how phytoplankton respond to environmental conditions, directly and indirectly. Here, we tested for the generality of patterns found in other studies, using a combined multiple‐factor gradient design and two single species with different size characteristics. We used a structural equation model (SEM) that allowed us to investigate the direct cumulative effects of temperature and resource availability (i.e., light, N and P) on phytoplankton growth, as well as their indirect effects on growth through changes in cell size and cell stoichiometry. Our results mostly support the results reported in previous research thus some effects can be identified as dominant effects. We identified rising temperature as the dominant driver for cell size reduction and increase in growth, and nutrient availability (i.e., N and P) as dominant factor for changes in cellular stoichiometry. However, indirect effects of temperature and resources (i.e., light and nutrients) on species' growth rates through cell size and cell stoichiometry differed across the two species suggesting different strategies to acclimate to its environment.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3