Efficient and reliable methods for estimating the abundance of keystone coastal macrofauna over large spatial scales

Author:

Reamon Molly1ORCID,Marcussen Johanna B.12,Laugen Ane T.1ORCID,Korslund Lars M.1ORCID

Affiliation:

1. Centre for Coastal Research, Department of Natural Sciences University of Agder Kristiansand Norway

2. Institute of Marine Research Tromsø Norway

Abstract

AbstractCoastal bivalves are important ecosystem engineers, and identifying critical habitats can enhance conservation outcomes for threated keystone species as well as determining hotspots for invasive species. As early action is more efficient in both conservation and mitigation of species invasions, efficient and reliable tools for mapping and monitoring species over large scales are essential. We assessed the reliability and efficiency of towed video and quadrat sampling for estimating the abundance of three keystone macrofaunal bivalve species. To assess reliability, we compared the measured density based on each of the two methods to the “true” density estimated by manually surveying an entire transect. We found that both the video and quadrat method caused underestimation of the density of bivalves, but that the amount of underestimation was comparable, and further that both methods took substantially less time than surveying an entire transect manually. The video method underestimated the abundance of Pacific oysters (Magallana gigas), European flat oysters (Ostrea edulis), and blue mussels (Mytilus spp.) by 23%, 24%, and 16%, respectively. The causes of underestimation for the two oyster species were bivalves grouped in clusters, large amounts of small individuals, and generally higher abundances. While Mytilus spp. were underestimated overall, here observer experience was important, with inexperienced observers overestimating and experienced observers underestimating. Our study found both methods to be reliable and efficient for estimating the abundance of three keystone macrofaunal species, suggesting their potential applicability to other sessile or slow‐moving species. We propose that these methods, due to their efficiency, can advance scientific knowledge and enhance conservation outcomes by establishing population baselines, assessing trends over time, and identifying and protecting critical habitats.

Funder

Interreg

Naturvårdsverket

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3