Pattern formation in dense populations studied by inference of nonlinear diffusion‐reaction mechanisms

Author:

Srivastava Siddhartha12ORCID,Garikipati Krishna123

Affiliation:

1. Department of Mechanical Engineering University of Michigan Ann Arbor Michigan USA

2. Michigan Institute for Computational Discovery & Engineering University of Michigan Ann Arbor Michigan USA

3. Department of Mathematics University of Michigan Ann Arbor Michigan USA

Abstract

SummaryReaction‐diffusion systems have been proposed as a model for pattern formation and morphogenesis. The Fickian diffusion typically employed in these constructions model the Brownian motion of particles. The biological and chemical elements that form the basis of this process, like cells and proteins, occupy finite mass and volume and interact during migration. We propose a Reaction‐Diffusion system with Maxwell‐Stefan formulation to construct the diffusive flux. This formulation relies on inter‐species force balance and provides a more realistic model for interacting elements. We also present a variational system inference‐based technique to extract these models from spatiotemporal data for these processes. We show that the inferred models can capture the characteristics of local Turing instability that instigates the pattern formation process. Moreover, the equilibrium solutions of the inferred models form similar patterns to the observed data.

Funder

W. M. Keck Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3