Estimation in a general mixture of Markov jump processes

Author:

Frydman Halina1ORCID,Surya Budhi Arta2ORCID

Affiliation:

1. Department of Technology, Operations and Statistics, Stern School of Business New York University New York NY 10012 USA

2. School of Mathematics and Statistics Victoria University of Wellington Gate 6, Kelburn PDE Wellington 6140 New Zealand

Abstract

AbstractWe propose a general mixture of Markov jump processes. The key novel feature of the proposed mixture is that the generator matrices of the Markov processes comprising the mixture are entirely unconstrained. The Markov processes are mixed with distributions that depend on the initial state of the mixture process. The maximum likelihood (ML) estimates of the mixture's parameters are obtained from continuous realizations of the mixture process and their standard errors from an explicit form of the observed Fisher information matrix, which simplifies the Louis (Journal of the Royal Statistical Society Series B, 44:226–233, 1982) general formula for the same matrix. The asymptotic properties of the ML estimators are also derived. A simulation study verifies the estimates' accuracy. The proposed mixture provides an exploratory tool for identifying the homogeneous subpopulations in a heterogeneous population. This is illustrated with an application to a medical dataset.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3