Robust estimation of loss‐based measures of model performance under covariate shift

Author:

Morrison Samantha1,Gatsonis Constantine1,Dahabreh Issa J.23,Li Bing4,Steingrimsson Jon A.4ORCID

Affiliation:

1. Department of Biostatistics Brown University Providence Rhode Island USA

2. CAUSALab Harvard T.H. Chan School of Public Health Boston Massachusetts USA

3. Department of Epidemiology Harvard T.H. Chan School of Public Health Boston Massachusetts USA

4. Department of Biostatistics Harvard T.H. Chan School of Public Health Boston Massachusetts USA

Abstract

AbstractWe present methods for estimating loss‐based measures of the performance of a prediction model in a target population that differs from the source population in which the model was developed, in settings where outcome and covariate data are available from the source population but only covariate data are available on a simple random sample from the target population. Prior work adjusting for differences between the two populations has used various weighting estimators with inverse odds or density ratio weights. Here, we develop more robust estimators for the target population risk (expected loss) that can be used with data‐adaptive (e.g., machine learning‐based) estimation of nuisance parameters. We examine the large‐sample properties of the estimators and evaluate finite‐sample performance in simulations. Last, we apply the methods to data from lung cancer screening using nationally representative data from the National Health and Nutrition Examination Survey (NHANES) and extend our methods to account for the complex survey design of the NHANES.

Funder

U.S. National Library of Medicine

Patient-Centered Outcomes Research Institute

National Cancer Institute

National Institute of General Medical Sciences

Publisher

Wiley

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3