Skilful probabilistic medium‐range precipitation and temperature forecasts over Vietnam for the development of a future dengue early warning system

Author:

Main Lucy1ORCID,Sparrow Sarah2ORCID,Weisheimer Antje13ORCID,Wright Matthew1ORCID

Affiliation:

1. Department of Physics University of Oxford Oxford UK

2. Department of Engineering Science University of Oxford Oxford UK

3. European Centre for Medium‐Range Weather Forecasts (ECMWF) Reading UK

Abstract

AbstractDengue fever is a source of substantial health burden in Vietnam. Given the well‐established influence of temperature and precipitation on vector biology and disease transmission, predictions of meteorological variables, such as those issued by ECMWF as a world‐leading provider of global ensemble forecasts, are likely to be valuable model inputs to a future dengue early warning system. In the absence of established verification at municipal and regional scales, this study assesses the skill of rainy season (May–October) ensemble precipitation and 2‐m temperature retrospective forecasts over North and South Vietnam initialized for dates during the period 2001–2020, evaluated against the ERA5 reanalysis for the same period. Forecasts are found to be significantly skilful compared with both climatology and persistence for lead times up to 10 days, including for cumulative precipitation values considered against independent rain gauge data. Rank histograms demonstrate that ensembles generally avoid excessive bias and consistently positive CRPSS values indicate substantial skill for temperature and cumulative precipitation forecasts for all spatial scales considered, despite differences in rainy season characteristics between North and South Vietnam. This forecast reliability demonstrates that meteorological input data based on ECMWF ensemble forecasts would add appreciably more value to the development of a future dengue early warning system compared to reference forecasts like climatology or persistence. These results raise hope for further exploration of predictive skill for relevant meteorological variables, particularly focused on their downscaling to produce district‐level epidemiological forecasts for urban areas where dengue is most prevalent.

Funder

Natural Environment Research Council

Wellcome Trust

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3