Numerical study on the heat effect on the drilling damage of Ti/CFRP stacks

Author:

Chen Chen1,Zhao Qing1,Wang Aixu1,Shi Zhanli1,Bai Yu2ORCID

Affiliation:

1. Naval Architecture and Ocean Engineering college Dalian Maritime University Dalian China

2. Institute of Machinery Manufacturing Technology China Academy of Engineering Physics Mianyang China

Abstract

AbstractCarbon fiber reinforced plastics (CFRP) has strong sensitivity to temperature, as the stacking sequence is titanium alloy (Ti) to CFRP, the damage of CFRP is more severe due to the accumulation of cutting heat. In this study, a stress‐strain constitutive model of CFRP with the effect of thermal stress is proposed. On the basis, a simulation model of drilling Ti/CFRP stacks is established to explore the heat effect on the drilling damage. Based on the results, it can be concluded that the burr of Ti at hole exit is generally low due to the support of CFRP, and the burr height increases by 56.61% as the temperature rises from 182.02 to 355.69 °C. Besides, the intralaminar damage of CFRP is mainly caused by the fiber tensile failure and matrix tensile failure, and the matrix tensile failure is more affected by temperature. Moreover, delamination of CFRP decreases slightly with the reduce of drilling temperature. In addition, serious damage of CFRP on the hole wall usually occurs within the cutting angle of 90° to 135°, and pit defects can be reduced in a lower drilling temperature.Highlights A thermal effect stress‐strain constitutive model of CFRP is proposed. Ti/CFRP drilling model is developed based on the proposed constitutive model. Fiber and matrix tensile failure are main form of intralaminar damage of CFRP. Matrix tensile failure is more sensitive to temperature.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3