Hybrid fatigue crack propagation analysis using damage and fracture mechanics methods

Author:

Wu Weijian1,Rasmussen Kim J.R.12,Michel Alexander3,Stang Henrik1

Affiliation:

1. Department of Civil and Mechanical Engineering Technical University of Denmark 2800 Kgs. Lyngby Denmark

2. School of Civil Engineering The University of Sydney Sydney NSW 2006 Australia

3. Department of Environmental and Resource Engineering Technical University of Denmark 2800 Kgs. Lyngby Denmark

Abstract

AbstractSteel structures are frequently exposed to high‐cycle loading in which fatigue cracks initiate and propagate in the service life. The development of crack(s) will affect the structural integrity. In extreme cases, e.g., earthquakes and impacts, structures may be overloaded in several cycles or even a single loading cycle with the development of significant plastic deformation and macro cracks. Service loads, e.g., traffic and waves, will afterwards still be experienced in these damaged structures. The aforementioned two types of deformation are currently analyzed using damage and fracture mechanics methods, respectively. The cycle‐by‐cycle calculation and jump strategy relying on the Paris' equation, are employed for the low (including monotonic) and high‐cycle problems, using elastoplastic and linear‐elastic materials, respectively. The two calculation methods were developed independently, which presents a challenge in analyzing overloaded high‐cycle fatigue problems. This paper presents and executes a hybrid analysis using damage and fracture mechanics models for the single‐edge notch bend specimen. Either linear‐elastic or elasto‐plastic materials is employed in finite element simulations. The hybrid analysis with the combination of damage and linear‐elastic fracture mechanics shows the potential of a promising solution for assessing the fatigue behaviour of steel structures experiencing extreme loading and associated stepwise material damage. Some challenges are addressed in the combination of the ductile fracture followed by the high cycle fatigue calculation.

Publisher

Wiley

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3