Synthesis, Electrochemistry, and Thermal Stability of High‐Energy Ball‐Milled Silicon‐based Alloy Anodes in Lithium‐Ion Batteries**

Author:

Zhang Xingyu1ORCID,Wang Luqi2,Zheng Tianye1ORCID,Lam Kwok‐ho13ORCID

Affiliation:

1. Department of Electrical Engineering The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong

2. Faculty of Science and Engineering The University of Manchester Manchester England United Kingdom

3. James Watt School of Engineering University of Glasgow Glasgow Scotland United Kingdom

Abstract

AbstractThe fast capacity degradation of silicon‐based anodes significantly limits the application in lithium‐ion battery (LIB) industries. Recently, Si−CuO composites have been reported as promising anodes in terms of being cost‐effective and technically feasible, but improved cycle stability is still desired. This work introduces a proper amount of NiO into the Si−CuO composites via a facile high‐energy ball‐milling method. The study reveals that compared to the binary Si‐CuO composites, Si−CuO−NiO samples have less pronounced volume change during the cycles due to the formation of rich‐Si NiSi2. More specifically, Si87.5(CuO)3.4(NiO)9.1 shows the highest 100‐cycle capacity retention of ∼86.9 % at 0.2 C with an average coulombic efficiency of ∼99.4 %. Moreover, the thermal stability investigation demonstrates that the temperature of 600 °C is suitable to coat a carbon layer on Si87.5(CuO)3.4(NiO)9.1, where the microstructure and the uniform element distribution produced in the milling process as well as the suppression to the cr‐Li3.75Si formation can be maintained to the maximum extent, thus with further enhanced electrochemical performance.

Funder

Hong Kong Polytechnic University

University of Glasgow

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3