Influence of Surface Groups on Electrochemical Properties of Molten Salt Synthesized Ti3C2Tx in Mild Aqueous Electrolytes

Author:

Guan Bin1,Ma Guoliang1,Lin Zifeng1ORCID

Affiliation:

1. College of Materials Science and Engineering Sichuan University Chengdu China

Abstract

AbstractMXene, notable for its excellent electrical conductivity and tunable surface groups, has garnered widespread attention in the field of electrochemical energy storage. Here, Ti3C2Tx MXene was synthesized by a Lewis acid molten salt‐shielded synthesis (MS3). The surface groups (−Cl, −O) were modified by washing Ti3C2Tx samples with various solutions (deionized water, 0.5 M hydrochloric acid (HCl), 0.5 M ammonium persulfate solution (APS)) and/or thermal treatments under an argon atmosphere at 300 °C, 500 °C, and 700 °C. It is shown that deionized water and HCl solution washing have minimal impact on the surface groups, while APS washing can increase the content of −O surface group. Conversely, thermal treatment may remove the −O. Electrochemical charge storage behavior of these Ti3C2Tx variants were further investigated in a 1 M acetate electrolyte buffered at pH=5.0. It is indicated that the −Cl surface group is electrochemically inert, whereas the −O may significantly improve the charge storage performance. Ti3C2Tx with high −O content delivered an impressive maximum capacity of 155 C g−1. This research underscores the crucial role of surface groups on the electrochemical performance of Ti3C2Tx in mild aqueous electrolytes, offering valuable insights for future modifications and applications of Ti3C2Tx in energy storage technologies.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3