Computational Model for Predicting Particle Fracture During Electrode Calendering

Author:

Xu Jiahui12,Paredes‐Goyes Brayan12,Su Zeliang12,Scheel Mario3,Weitkamp Timm3,Demortière Arnaud124,Franco Alejandro A.1245ORCID

Affiliation:

1. Laboratoire de Réactivité et Chimie des Solides (LRCS) UMR CNRS 7314 Université de Picardie Jules Verne Hub de l'Energie 15 rue Baudelocque 80039 Amiens Cedex France

2. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) FR CNRS 3459 Hub de l'Energie 15 rue Baudelocque 80039 Amiens Cedex France

3. Synchrotron SOLEIL 91190 Saint-Aubin France

4. ALISTORE-European Research Institute FR CNRS 3104 Hub de l'Energie 15 rue Baudelocque 80039 Amiens Cedex France

5. Institut Universitaire de France 103 Boulevard Saint Michel 75005 Paris France

Abstract

AbstractIn the context of calling for low carbon emissions, lithium‐ion batteries (LIBs) have been widely concerned as a power source for electric vehicles, so the fundamental science behind their manufacturing has attracted much attention in recent years. Calendering is an important step of the LIB electrode manufacturing process, and associated changes in the electrode microstructure and mechanical properties are worthy of study. In this work, we report the observed cracking of active material (AM) particles due to calendering pressure under ex situ X‐ray nano tomography experiments. We developed an innovative 3D discrete element method (DEM) model with bonded connections to physically mimic the calendering process using real AM particle shapes derived from the tomography experiments. The DEM model can well predict the change of the morphology of the dry electrode under pressure, and the changes of the applied pressure and porosity are consistent with the experimental values. At the same time, the model is able to simulate the secondary AM particles cracking by the fracture of the bonds under force. Our model is the first of its kind that can predict the fracture of the secondary particles along the calendering process. This work provides a tool for guidance in the manufacturing of optimized LIB electrodes.

Funder

European Research Council

Institut Universitaire de France

Equipex

Agence Nationale de la Recherche

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3