A Microporous Gel Polymer Electrolyte with High Mg2+ Ionic Conductivity at Room Temperature

Author:

Liu Jiawei1,Yan Yigang2,Wicaksana Filicia1,Wei Shanghai1ORCID

Affiliation:

1. Department of Chemical & Materials Engineering Faculty of Engineering The University of Auckland 1010 Auckland New Zealand

2. Institute of New Energy and Low-Carbon Technology Sichuan University Chengdu 610065 China

Abstract

AbstractRechargeable magnesium batteries have attracted much attention due to the high theoretical volumetric capacity, abundance, and safety. However, solid‐state Mg batteries have been rarely studied because of limited choices of solid‐state electrolyte materials. In this research, poly(vinylidene fluoride)/poly(propylene carbonate) (PVDF/PPC) as matrix were prepared using a simple solution casting method. Ethylene carbonate (EC), diethyl carbonate (DEC), and magnesium(II) bis(trifluoromethanesulfonyl) imide [Mg(TFSI)2] were selected to prepare liquid electrolyte. A classification of novel gel polymer electrolytes (GPEs), PVDF/PPC/Mg(TFSI)2, was synthesized and investigated. The electrochemical measurements show that PVDF/PPC/Mg(TFSI)2 polymer electrolytes exhibit a high ionic conductivity, close to 10−2 S cm−1, at room temperature. The electrochemical stability window of PVDF/PPC‐based GPE was up to 3 V (versus Mg2+/Mg). Materials characterization shows that these GPEs have a porous structure, providing a pathway for magnesium ion transport. Thermal analysis and crystal structure results indicate that PVDF crystallinity was affected by the addition of PPC. Additionally, the ion transport mechanism in the gel polymer electrolyte has been discussed.

Funder

Ministry of Business, Innovation and Employment

National Natural Science Foundation of China

Sichuan Province Science and Technology Support Program

Chinese Government Scholarship

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3