A Nanostructured Phenazine‐based Conjugated Microporous Polymer Hybrid Anode Boosts Power and Practicability of Organic‐Manganese Hydronium‐Ion Batteries

Author:

Grieco Rebecca1,Fombona‐Pascual Alba1,Patil Nagaraj1ORCID,Alvan Diego1,Liras Marta2ORCID,Marcilla Rebeca1ORCID

Affiliation:

1. Electrochemical Processes Unit IMDEA Energy Institute Avda. Ramón de la Sagra 3 28935 Móstoles Spain

2. Photoactivated Processes Unit IMDEA Energy Institute Avda. Ramón de la Sagra 3 28935 Móstoles Spain

Abstract

AbstractOrganic‐manganese hydronium‐ion batteries are gaining attention for their safety, sustainability, and high rate capabilities. However, their electrochemical performance faces challenges due to organic active‐materials’ inferior properties, including low conductivity and solubility, and limited content (<60 wt %) and loading (<2 mg cm−2) in the anode. To address this, we developed a high‐performance battery using a phenazine‐based conjugated microporous polymer hybrid anode (IEP‐27‐SR), utilizing hydronium‐ion coordination/un‐coordination chemistry. The IEP‐27‐SR anode features enhanced structural characteristics, such as a high BET specific surface area, mixed micro‐/mesoporosity, nanostructurization, and hybridization, enabling rapid hydronium‐ion mobility. The resulting IEP‐27‐SR//MnO2@GF full‐cell demonstrates high capacity (101 mAh g−1 at 2 C), excellent rate performance (41 mAh g−1 at 100 C), ultrafast‐charging capability (80 % charged in 18 seconds), and impressive cycling stability with 83 % capacity retention over 20400 cycles at 30 C with a regular polymer mass loading of 2 mg cm−2, despite its high content (80 wt %) in the anode. Moreover, it shows operability at low temperatures (63 mAh g−1 at −40 °C). Most importantly, the full‐cell with a high‐mass‐loading polymer anode (30 mg cm−2) achieves practically relevant areal capacity (3.4 mAh cm−2 at 4 mA cm−2) and sustains 2 mAh cm−2 under an extremely high areal current (50 mA cm−2). This breakthrough highlights the progress of organic hydronium‐ion batteries, representing progress toward practical, sustainable energy storage solutions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3