[4]Helicenium Ion as Bipolar Redox Material for Symmetrical Fully Organic Pole‐less Redox Flow Battery

Author:

Moutet Jules1ORCID,Mills David D.1,Lozier Diego L.1,Gianetti Thomas L.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85719 United States

Abstract

AbstractLong duration storage batteries such as Redox Flow Batteries (RFBs) are promising storage system to address the energy storage requirement that our society will require in the years to come. Recent effort has been focused on the development of metal free and high energy density system such as all‐organic non‐aqueous redox flow batteries (NAORFBs). However high‐voltage NAORFBs currently use distinct anolytes and catholytes, which are separated by a membrane sensitive to osmotic pressure, resulting in rapid capacity and energy density degradation over time. To address this issue, symmetric organic redox flow batteries (SORFBs) have been proposed as an elegant solution. We have introduced dimethoxyquinacridiniums (DMQA+) ions as efficient bipolar redox molecules (BRMs) in static H‐cell conditions. In this study, we present the first application of DMQA+ ions in a complete flow RFB prototype, showcasing their ability to operate with polarity reversal. Key kinetic properties were evaluated through cyclic voltammetry and DFT calculations. While coulombic and energy efficiency metrics were moderate, pegylated DMQA+ demonstrated impressive capacity retention of over 99.99 % and the capability to operate under polarity inversion, making it a highly attractive choice for grid‐scale, long‐lifespan energy storage applications.

Funder

National Science Foundation

University of Arizona

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3