Interphase design of LiNi0.6Mn0.2Co0.2O2 as positive active material for lithium ion batteries via Al2O3 coatings using magnetron sputtering for improved performance and stability

Author:

Javed Atif12ORCID,Makvandi Ardavan3ORCID,Demelash Feleke1,Adhitama Egy12ORCID,Heidrich Bastian1ORCID,Peterlechner Martin3ORCID,Wilde Gerhard3ORCID,Winter Martin14ORCID,Börner Markus1ORCID

Affiliation:

1. MEET Battery Research Center Corrensstr. 46 48149 Münster Germany

2. University of Münster International Graduate School for Battery Chemistry Characterization Analysis Recycling and Application (BACCARA) Corrensstr. 40 48149 Münster Germany

3. University of Münster Institute of Materials Physics Wilhelm-Klemm-Str.10 48149 Münster Germany

4. Forschungszentrum Jülich GmbH Helmholtz Institute Münster (IEK-12) Corrensstr. 46 48149 Münster Germany

Abstract

AbstractLiNixMnyCozO2 (x+y+z=1) is one of the most present and versatile positive active materials for lithium ion batteries due to comparatively high specific capacity and high operating potential. However, NMC materials are prone to various degradation effects including moisture uptake, formation of impurities at the particle surface and transition metal dissolution during charge/discharge cycling and/or at elevated temperatures. Beyond that, cation mixing can lead to phase transformation, oxygen evolution, particle cracking and particle disintegration. Therefore, an alumina coating was applied and optimized as protective interphase on LiNi0.6Mn0.2Co0.2O2 (NMC622) powders, using a specifically in‐house developed RF‐magnetron sputtering technique. The alumina coated NMC622 showed a 13 % improvement in capacity retention after 200 charge/discharge cycles in lab‐scale cells, compared to pristine uncoated NMC622. Using electrochemical impedance spectroscopy, the interfacial/interphasial resistance of pristine and alumina coated NCM622 based electrodes were explored to study the impact of the coating on lithium ion transport. Furthermore, the structural and thermal stability of cyclic aged NMC622 were analyzed via TEM, EELS and TGA. Therein, alumina coated samples demonstrated enhanced thermal stability, less structural degradation, and reduced particle cracking.

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3