Polyphosphazene Based Inorganic‐Organic Hybrid Cathode Containing Pyrene Tetraone Sides for Aqueous Zinc‐Ion Batteries

Author:

Sariyer Selin12,Yeşilot Serkan3,Kılıç Nazmiye3,Ghosh Arpita45,Sel Ozlem45,Demir‐Cakan Rezan23ORCID

Affiliation:

1. Department of Chemical Engineering Gebze Technical University Gebze Kocaeli 41400 Turkey

2. Institute of Nanotechnology Gebze Technical University Gebze Kocaeli 41400 Turkey

3. Department of Chemistry Gebze Technical University Gebze Kocaeli 41400 Turkey

4. Chimie du Solide et de l'Energie UMR 8260 Collège de France 11 Place Marcelin Berthelot 75231 Paris Cedex 05 France

5. Réseau sur le Stockage Electrochimique de l'Energie (RS2E) CNRS FR 3459 33 Rue Saint Leu 80039 Amiens Cedex France

Abstract

AbstractAqueous rechargeable zinc‐ion batteries (ARZBs) are intriguing for electrochemical energy storage applications because of their safety and cost‐effectiveness. Regarding cathode materials, rapid development has been observed with the organic‐based cathode materials that offer much higher structural integrity upon successive (de‐)insertion of charge carries ions. Even though promising results demonstrated with organic electrodes, they still suffer from the short cycle‐life due to their discharge products solubility in electrolyte. Herein, electrochemical performance and charge storage mechanism of the synthesized polyphosphazene‐based inorganic‐organic hybrid electrode containing pyrene‐4,5,9,10‐tetraone (PTO) redox active lateral group, poly[(bis(2‐amino‐4,5,9,10‐pyrenetetraone)], abbreviated as (PPAPT), were investigated in ARZBs. The charge storage mechanism of PPAPT was examined by variousex‐situ[Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), scanning electron microscopy and energy dispersive X‐ray spectroscopy (SEM‐EDS), X‐ray photoelectron spectroscopy (XPS)] andin‐situ[pH change with bromocresol green indicator and electrochemical quartz crystal microbalance (EQCM)] characterization techniques as well as computational density functional theory (DFT) revealing that the PPAPT electrode (de‐)coordinates both zinc and proton. The electrode and its discharge product are insoluble in the electrolyte demonstrated by UV‐vis analysis and exhibited a stable cycling performance with a discharge capacity of 125.4 mAh g−1after 1000 cycles at a current density of 10 C.

Publisher

Wiley

Subject

Electrochemistry,Electrical and Electronic Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3