ZnO Substitution in Argyrodite Li5.5+3xZnxP1‐xOxS4.5‐xBr1.5 Electrolyte with Enhanced Interface Performance for All‐Solid‐State Battery

Author:

Lin Xizhong1,Li Dabing1,Li Yaru1,Zhao Xiaoxue1,Li Yang1,Fan Li‐Zhen1ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering Institute of Advanced Materials and Technologies University of Science and Technology Beijing Beijing 100083 China

Abstract

AbstractArgyrodite sulfide solid electrolytes (SSEs) have been attracting more concentration in ionic conductivity, crystal structure, and mechanical properties. Nevertheless, shortcomings of SSEs like poor air‐vapor stability and interface reactions limit the wider application in batteries. Herein, a double‐element ZnO substitution strategy is applied to enhancing Li5.5PS4.5Br1.5 Argyrodite electrolyte structure stability and property, Li5.5PS4.5Br1.5 electrolyte with a small amount of ZnO substitution to P and S. Li5.5+3xZnxP1‐xOxS4.5‐xBr1.5 solid electrolytes have achieved improved performance, interface composition also has changed, and crystal structure is becoming more stable. Specifically, LPSBr1.5‐4 %ZnO exhibits the most promising comprehensive properties, more expanded lithium pathway and crystal cell size, 2.25 mS cm−1 ionic conductivity at 25 °C, 65 % electronic conductivity decline, and air stability enhancement. Moreover, LPSBr1.5‐4 %ZnO show decent lithium compatibility and dendrite suppression capability, LPSBr1.5‐4 %ZnO can continue cycling for more than 800 h at 0.1 mA cm−2 in Li symmetric cell, and critical current density has reached 1.4 mA cm−2. More importantly, an all‐solid‐state battery (ASSB) with LPSBr1.5‐4 %ZnO electrolyte can cycle with 130 mAh g−1 capacity and more than 120 cycles in LiCoO2|SSE|In‐Li cell. Our work might provide a strategy to promote structure stability and electrochemical durability, and how element substitution affects ionic transport pathway and crystal structure.

Funder

Shanxi Provincial Key Research and Development Project

Natural Science Foundation of Beijing Municipality

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3