Affiliation:
1. Department of Chemical and Petroleum Engineering University of Calgary 2500 University Dr NW Calgary AB T2N 1N4 Canada
2. Department of Physics and Engineering Physics Tulane University New Orleans LA 70118 United States
3. Department of Electrical and Computer Engineering Queen's University 99 University Avenue Kingston Ontario K7L 3N6 Canada
Abstract
AbstractThe development of electrodes with high performance and long‐term stability is crucial for commercial application of vanadium redox flow batteries (VRFBs). This study compared the performance of VRFB with thermal‐treated and MXene‐modified carbon paper. To prepare the MXene, a modified‐etching process with ammonium−bifluoride (NH4HF2) led to a mild and efficient conversion of the MAX‐phase to MXene compared to etching process with hydrofluoric‐acid (HF). Electron microscopy and X‐ray diffraction studies revealed that the etching process with NH4HF2 led to MXene nanostructures with a large interlayer spacing. The results show that at a current density of 60 mA cm−2, the energy efficiency increased by 25.5 % when using a NH4HF2 ‐etched MXene‐modified negative electrode, by 12.5 % with a thermal‐treated MXene‐modified electrode, and by 4 % with an HF‐etched MXene‐modified electrode, in comparison to the pristine electrode. The maximum power density of the battery was increased by more than 40 %. In long‐term cycling experiments the MXene modified electrode exhibited excellent stability over 1000 cycles of charge‐discharge, with 0.05 % discharge capacity decay per cycle, amongst the lowest values reported to date and four times lower than for thermally‐treated electrode. The superior performance was linked to the improved electrical conductivity and wettability, higher interlayer spacing, and lower charge transfer resistance for the V2+/V3+ redox reaction.
Funder
Natural Sciences and Engineering Research Council of Canada
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献